Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jing-Gui Zhao, Zhu-Yan Zhang, Li-Hua Huo and Shan Gao*

College of Chemistry and Chemical Technology, Heilongjiang University, Harbin 150080,
People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.055$
$w R$ factor $=0.177$
Data-to-parameter ratio $=14.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Hexaaquamagnesium(II) bis[(4-oxo-4H-pyridin-1-yl)acetate] dihydrate

In the title compound, $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Mg}^{\mathrm{II}}$ atom lies on a centre of symmetry and is coordinated by six water molecules in an octahedral geometry. A threedimensional supramolecular framework is formed via O $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the anions and cations.

Comment

Recently, we have described the complexes $\left[M\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]$ -(4-OPA) $2 \cdot 2 \mathrm{H}_{2} \mathrm{O}$ [4-OPA ${ }^{-}$is the (4-oxo-4H-pyridin-1-yl)acetate anion, $M=\mathrm{Zn}, \mathrm{Ni}$; Gao et al., 2004; Zhang et al., 2004], in which $4-\mathrm{OPA}^{-}$exists as an $\left[\mathrm{O}=\mathrm{C}(\mathrm{CH}=\mathrm{CH})_{2} \mathrm{~N}-\mathrm{CH}_{2}-\right.$ $\left.\mathrm{CO}_{2}\right]^{-}$counterion having a double-bonded O atom connected to the ring. In order to explore further the coordination behaviour and solid-state structure of metal salts with the 4-HOPA ligand, we used $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ under similar reaction conditions to synthesize the title hexaaquamagnesium(II) complex, (I).

The title compound is found to be isostructural with the $\mathrm{Zn}^{\mathrm{II}}$ and $\mathrm{Ni}^{\mathrm{II}}$ analogues. A similar description applies to the present complex (Fig. 1).

(I)

Figure 1
The structural components of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H Displacement ellipsoids are drawn at the 30% probability level and H
atoms are shown as small spheres of arbitrary radii. The hydrogen bond is shown as a dashed line. The symmetry code for the unlabelled aqua ligands is as in Table 1.
 ligand is

Received 22 November 2004
Accepted 26 November 2004
Online 30 November 2004

Figure 2

A packing diagram for (I), viewed along the c axis. Hydrogen bonds are shown as dashed lines. H atoms bonded to C atoms have been omitted.

Experimental

The title complex was prepared by the addition of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $(1.94 \mathrm{~g}, 10 \mathrm{mmol})$ to an aqueous solution of (4-oxo-4H-pyridin-1$\mathrm{yl})$ acetic acid $(2.92 \mathrm{~g}, 20 \mathrm{mmol})$. The pH was adjusted to 7 with 0.2 M NaOH solution. Colourless crystals of (I) were obtained from the filtered solution over several days. CHN analysis, calculated for $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 35.57$, H 5.97, N 5.93\%; found: C 35.77, H 5.84, N 6.06%.

Crystal data

$\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=472.69$
Monoclinic, $P 2_{1} / c$
$a=12.486(3) \AA$
$b=12.904(3) \AA$
$c=6.8131(14) \AA$
$\beta=99.21(3)^{\circ}$
$V=1083.6(4) \AA^{3}$
$Z=2$

Data collection

Rigaku RAXIS-RAPID
 diffractometer
 ω scans
 Absorption correction: multi-scan
 (ABSCOR; Higashi, 1995)
 $T_{\text {min }}=0.953, T_{\text {max }}=0.974$
 9164 measured reflections

$D_{x}=1.449 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 9023
\quad reflections
$\theta=3.2-27.5^{\circ}$
$\mu=0.16 \mathrm{~mm}^{-1}$
$T=296(2) \mathrm{K}$
Prism, colourless
$0.38 \times 0.26 \times 0.17 \mathrm{~mm}$

2477 independent reflections
2212 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-16 \rightarrow 16$
$k=-16 \rightarrow 16$
$l=-8 \rightarrow 8$

Refinement

```
Refinement on F
R[\mp@subsup{F}{}{2}>2\sigma(\mp@subsup{F}{}{2})]=0.055
wR(F}\mp@subsup{F}{}{2})=0.17
S=1.08
2477 reflections
1 6 6 \text { parameters}
H atoms treated by a mixture of independent and constrained refinement
```

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Mg} 1-\mathrm{O} 1 W$	$2.0735(19)$	$\mathrm{O} 2-\mathrm{C} 7$	$1.245(3)$
$\mathrm{Mg} 1-\mathrm{O} 2 W$	$2.0652(19)$	$\mathrm{O} 3-\mathrm{C} 3$	$1.272(3)$
$\mathrm{Mg} 1-\mathrm{O} 3 W$	$2.049(18)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.353(4)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.253(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.356(4)$
$\mathrm{O} 2 W-\mathrm{Mg} 1-\mathrm{O} 1 W$	$89.98(9)$	$\mathrm{O} 3 W-\mathrm{Mg} 1-\mathrm{O} 2 W$	$89.68(8)$
$\mathrm{O} 2 W-\mathrm{Mg} 1-\mathrm{O} 1 W^{\mathrm{i}}$	$90.02(9)$	$\mathrm{O} 3 W-\mathrm{Mg} 1-\mathrm{O} 2 W^{\mathrm{i}}$	$90.32(8)$
$\mathrm{O} 3 W-\mathrm{Mg} 1-\mathrm{O} 1 W$	$90.97(9)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$	$113.9(2)$
$\mathrm{O} 3 W-\mathrm{Mg} 1-\mathrm{O} 1 W^{\mathrm{i}}$	$89.03(9)$		
Symmetry code: $(\mathrm{i}) 1-x, 1-y, 1-z$			

Symmetry code: (i) $1-x, 1-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 4 W$	0.85 (3)	1.89 (3)	2.734 (3)	172 (4)
$\mathrm{O} 1 W-\mathrm{H} 1 W 2 \cdots \mathrm{O}{ }^{\text {ii }}$	0.85 (3)	2.01 (3)	2.837 (3)	164 (3)
$\mathrm{O} 2 W-\mathrm{H} 2 W 2 \cdots \mathrm{O} 1^{\text {iii }}$	0.85 (3)	1.89 (3)	2.709 (3)	162 (3)
$\mathrm{O} 2 W-\mathrm{H} 2 W 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.85 (3)	2.06 (3)	2.847 (3)	153 (3)
$\mathrm{O} 3 W-\mathrm{H} 3 W 2 \cdots \mathrm{O}^{\text {iv }}$	0.85 (3)	1.92 (3)	2.754 (3)	170 (4)
$\mathrm{O} 3 W-\mathrm{H} 3 W 1 \cdots \mathrm{O}^{\text {v }}$	0.84 (3)	1.88 (3)	2.719 (3)	173 (3)
$\mathrm{O} 4 W-\mathrm{H} 4 W 2 \cdots \mathrm{O}^{\text {vi }}$	0.85 (3)	1.98 (3)	2.809 (4)	163 (5)
$\mathrm{O} 4 W-\mathrm{H} 4 W 1 \cdots 3^{\text {vii }}$	0.85 (3)	2.17 (2)	2.978 (4)	158 (5)

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $x, y, 1+z$; (iii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iv)
$2-x, 1-y, 1-z$; (v) $x, \frac{3}{2}-y, \frac{1}{2}+z$; (vi) $x-1, y, 1+z$; (vii) $x-1, \frac{3}{2}-y, \frac{1}{2}+z$.
H atoms on C atoms were placed in calculated positions, with $\mathrm{C}-$ $\mathrm{H}=0.93$ or $0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, and were included in the refinement in the riding-model approximation. Water H atoms were located in difference Fourier maps and refined with the restraints $\mathrm{O}-$ $\mathrm{H}=0.85(1) \AA, \mathrm{H} \cdots \mathrm{H}=1.39(1) \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant No. 20101003), Heilongjiang Province Natural Science Foundation (grant No. B007), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (grant No.1054G036) and Heilongjiang University for supporting this study.

References

Gao, S., Zhang, Z.-Y., Huo, L.-H., Zhao, H. \& Zhao, J.-G. (2004). Acta Cryst. E60, m444-m446.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, Z.-Y., Gao, S., Huo, L.-H., Zhao, H. Zhao, J.-G. \& Ng, S. W. (2004). Acta Cryst. E60, m544-m545.

